Один из самых распространенных видов смазочных материалов – это пластичные смазки. Их выпуск составляет около миллиона тонн ежегодно.
Пластичные смазки (консистентные смазки) могут демонстрировать свойства жидкости или твердых тел исходя из нагрузки.
Состав пластичных смазок: жидкое масло, твёрдый загуститель, присадки, добавки.
Элементы загустителя пластичных смазок имеют коллоидную форму, формируют структуру, в ячейках структуры удерживается дисперсионная среда (масло).
Если температура среды обычная и нагрузки невелики, то смазка становится твердым телом – сохраняет изначальную плотную форму. А если нагрузка растет, то смазка изменяется, "подстраиваясь" под новые условия – она становится жидкой и течет. Когда же нагрузка идет на убыль, пластичная смазка снова затвердевает. Это заметно упрощает конструкцию и уменьшает вес узлов трения, не говоря уже о экологическом факторе.
Как изготовляют пластичные смазки?
Производят пластичные смазки путем добавления в нефтяные или синтетические масла 5-30 (обычно 10-20) % твёрдого загустителя. Весь процесс изготовления состоит из стадий. Сначала в котлах приготовляют расплав загустителя в масле. Когда он охлаждается, то кристаллизуется – внешне это напоминает сетку мелких волокон. При процессе выработки состав ряда пластичных смазок обогащается присадками (антиокислительными, антикоррозионными, противозадирными) или твердыми добавками (антифрикционные, герметизирующие).
Как классифицируются пластичные смазки?
По типу загустителя и по сфере применения. Самые распространенные - это мыльные пластичные смазки, загущенные кальциевыми, литиевыми, натриевыми мылами высших жирных кислот. Рабочий предел гидратированных кальциевых пластичных смазок (солидолов) равен +60...+80 °С, натриевых - +110 °С, эксплуатация литиевых и комплексных кальциевых смазок допустима до +120...+140 °С. Доля углеводородных пластичных смазок, загущенных парафином и церезином, составляет всего 10-15 % от производства пластичных смазок. Они обладают низкой температурой плавления (+50...+65 °С) и применяются, как правило, для консервации металлоизделий.
По задачам и сферам применения выделяют типы пластичных смазок:
-
Антифрикционные смазки. Они уменьшают трение скольжения и снижают износ. Сфера использования: подшипники качения, подшипники скольжения, шарниры, зубчатые и цепные передачи, транспортные и сельскохозяйственные машины
-
Консервационные смазки. Антикоррозионная защита металлических изделий. Они свободно удаляются с трущейся поверхности при расконсервировании детали
-
Уплотнительные пластичные смазки включают в себя арматурные смазки, резьбовые смазки (смазка для резьбовых соединений), вакуумные смазки
Пластичные смазки. Применение
Пластичные смазки обеспечивают длительную и надежную работу механизмов. Выработка пластичных смазок достигает 1 млн. тонн в год, и это куда меньше объема производства смазочных масел (примерно 40 млн. тонн/год).
Главное назначение пластичных смазок – снижение износа поверхностей трения, увеличение рабочего срока элементов машин и механизмов.
В некоторых случаях смазки призваны упорядочивать износ, не допуская трения и заклинивания поверхностей, а также воздействия агрессивных веществ, абразива. Есть и такие смазки, которые замене не подлежат вовсе (или имеют очень большие интервалы замены). Свойства подобных смазок не изменяются в течение всего периода работы.
Большинство смазок имеет антикоррозионные свойства. Чтобы обеспечить антикоррозионную защиту металлических поверхностей в процессе транспортировки или хранения нужны консервационные смазки. Уплотнительные смазки рассчитаны на герметизацию зазоров в узлах, а также герметизацию трубопроводов.
Ряд специальных смазок могут следующее: повышение коэффициента трения, токоизоляция или, напротив, токопроводность, работа в условиях радиации, вакуума...
Если смотреть на состав, то они состоят из жидкой основы (дисперсионная среда), твердого загустителя (дисперсная фаза) в сочетании с наполнителями и присадками.
Под дисперсионной средой могут подразумеваться разные масла и жидкости. Используются также синтетические масла для смазок, которые эксплуатируются в экстремальных условиях: сложные эфиры, фторуглероды, фторхлоруглероды, полиалкиленгликоли, полифениловые эфиры, кремнийорганические жидкости.
Сфера использования смазки зависит прежде всего от температуры плавления и разложения дисперсной фазы, а также от концентрации и растворимости в масле.
Загуститель влияет на антифрикционные свойства, устойчивость к воде, коллоидную, механическую и кислотостойкость смазки. Чтобы придать такие свойства смазке - в состав добавляют соли карбоновых кислот, высокодисперсные вещества, тугоплавкие углеводороды.
Из-за увеличения нагрузки и требований к эксплуатации узлов трения в современные пластичные смазки добавляют присадки и наполнители.
Присадки бывают: противоизносные, противозадирные, антифрикционные, защитные, вязкостные, адгезионные.
Некоторые из присадок оптимизируют сразу несколько свойств.
Что может быть наполнителем? Очень часто используют графит, дисульфид молибдена, полимеры (у них малый коэффициент трения). Если нужна смазка для тяжелонагруженного узла (трение скольжения), то берутся резьбовые уплотнительные или антифрикционные смазки с добавлением оксидов цинка, титана, алюминия, олова, бронзы, латуни.
Как правило, такие наполнители составляют от 1 до 30 % от смазки.
О классификациях смазок
В Европе рубежом есть 2 классификации, разработанные (NLGI).
Классификация по вязкости разбивает смазки на 9 классов по величине пенетрации. Величина пенетрации вычисляется путем погружения металлического конуса в пластичную смазку.
Чем больше в течение заявленного отрезка времени опустится конус – тем ниже класс NLGI, мягче смазка. Это не очень хорошо – мягкая смазка будет легко выдавливаться из зоны трения. А если класс NLGI велик, то очень густая смазка будет весьма неохотно возвращаться в зону трения и сопротивляться нагрузкам.
Другая классификация определяет 5 классов пластичным смазкам исходя из областей применения в автомобилях.
Смазки делятся по консистенции на полужидкие, пластичные и твердые.
Пластичные смазки и полужидкие смазки – это коллоидные системы, имеющие в своем составе дисперсионную среду, дисперсную фазу, и присадки с добавками.
Твердые смазки – тут сложнее, т.к. до отверждения они являются суспензиями (состав: смола + растворитель). Роль загустителя тут исполняют дисульфид молибдена или графит. А после отверждения, когда растворитель испаряется, твердые смазки становятся золями с малым коэффициентом сухого трения.
Состав смазки – тут выделяют 4 группы:
-
Мыльные. Загустителями могут быть соли карбоновых кислот (мыла). Кальциевые, литиевые, бариевые, алюминиевые и натриевые смазки. Исходя из жирового сырья, мыльные смазки могут называться условно синтетическими (если основа – синтетические жирные кислоты), или жировыми (если основа – природные жирные кислоты)
-
Неорганические. Загустителями могут быть термостойкие вещества. Силикагелевые, бентонитовые, графитные смазки
-
Органические. Чтобы изготовить такие смазки применяют термостабильные вещества. Полимерные, пигментные, полимочевинные, сажевые смазки
-
Углеводородные. Для загущения применяют тугокоплавкие углеводороды: петролатум, церезин, парафин, воск
Немалой проблемой является совместимость смазок с разным составом.
Когда происходит замена смазки, то часто узел трения не удается полностью освободить от прежней закладки.
Например, в шарнирах рулевого управления остается до 40% отработавшей смазки.
А когда смешивается "старая" смазка со свежей, то утрачиваются рабочие характеристики. Подобная смесь либо вытекает либо сильно уплотняется – это влияет на прочность узла.
Таким образом, никуда не уйти от вопроса, как смешивать разные смазки.
Главный фактор, обуславливающий совместимость смазок – это природа загустителя.
Основа и присадки с добавками несильно влияют на совместимость. Сначала о хорошем – легко могут быть совмещены консервационные материалы с загустителями в виде тугоплавких углеводородов (парафин, церезин). Также нет проблем с совместимостью у продуктов, загущенных стеаратом натрия и оксистеаратом лития.
А вот плохой совместимостью отличаются смазки с загустителями в виде силикагеля, стеарата лития и полимочевины.
Современные смазки на 12-гидроксистеарате лития, скажем, Литол-24, уверенно себя чувствуют в большом диапазоне температур от -40 до +120 °С, обладают хорошими рабочими свойствами, могут заменять устаревшие средства, например, консталин, солидолы и др.
Перспективными смазками являются те, что выработаны на комплексном литиевом мыле. Они рассчитаны на работу в более распространенном температурном диапазоне (от -50 до +160...+200 °С).
Литиевая смазка ЛКС-металлургическая в некоторых случаях заменяет ИП-1, 1-13, ВНИИНП-242, Литол-24. Кроме того, комплексные литиевые смазки используются в промышленности - в машиностроении, автомобилестроении, текстильной отрасли.
Костяк российского смазочного ассортимента на 44,4 % состоит из устаревших кальциевых смазок (солидолы), доля которых в развитых странах уже невелика.
Производственная доля натриевых и натриевокальциевых смазок в нашей стране составляет 31 % от объема. У таких материалов хорошие характеристики при рабочих температуре от -30 до +100 °С.
Что касается иных мыльных смазок, то они не очень распространены (0,3 %).
Содержание смазок, изготовленных с помощью неорганических загустителей (силикагели, сажа, бентонит) в нашей стране совсем ничтожно. Как правило, это специализированные температуростойкие смазки (до + 200...+250 °С), имеющие химическую стойкость.
Немыльные смазки изготавливают с помощью органических загустителей. Современные полиуреатные продукты изготовленные на нефтяных и синтетических углеводородных продуктах, рассчитаны на температуры до + 220 °С, так что они напоминают термостойкие тефлоновые смазки на базе перфторполиэфиров, но имеют преимущество, поскольку обходятся дешевле.
Экономическое развитие автомобилестроения, металлургии, нефтегазодобычи активизирует увеличение потребления пластичных смазок, в частности, автомобильных смазок, смазок для металлургии, работающие при температуре до +150 °С.